设计一个线程池涉及到多个方面,包括线程的创建与销毁、任务的提交与执行、线程间的通信等。
以下不念给出的是一个简单的线程池设计思路:
- 线程池的结构:创建一个线程池类,其中包含一个任务队列和一定数量的工作线程。
- 任务类:创建一个任务类,用于表示需要在线程池中执行的具体任务。任务类中应包含任务的执行逻辑。
- 任务队列:使用一个线程安全的队列来存储待执行的任务。当有新的任务提交时,将任务加入任务队列。
- 线程管理:创建一定数量的工作线程,这些线程会循环地从任务队列中取任务并执行。线程执行完一个任务后,继续尝试获取并执行下一个任务。
- 线程同步:使用互斥锁等机制来保护任务队列,防止多个线程同时访问导致数据竞争。
- 任务执行:工作线程从任务队列中获取任务,执行任务的执行逻辑。执行完任务后,线程可以等待新任务或者被销毁,具体取决于线程池的设计。
- 线程池的生命周期管理:提供线程池的初始化、销毁等方法,确保线程池的正常运行和释放占用的资源。
![如何设计一个线程池 图片[1]-如何设计一个线程池-不念博客](https://www.bunian.cn/wp-content/uploads/2023/11/u25745782901580812047fm253fmtautoapp138fJPEG.webp)
给个例子:
#include <iostream>#include <vector>#include <queue>#include <thread>#include <mutex>#include <condition_variable>#include <functional>class ThreadPool {public:ThreadPool(size_t numThreads) : stop(false) {for (size_t i = 0; i < numThreads; ++i) {workers.emplace_back([this] {while (true) {std::function<void()> task;{std::unique_lock<std::mutex> lock(queueMutex);condition.wait(lock, [this] { return stop || !tasks.empty(); });if (stop && tasks.empty()) {return;}task = std::move(tasks.front());tasks.pop();}task();}});}}~ThreadPool() {{std::unique_lock<std::mutex> lock(queueMutex);stop = true;}condition.notify_all();for (std::thread &worker : workers) {worker.join();}}template<class F>void enqueue(F&& f) {{std::unique_lock<std::mutex> lock(queueMutex);tasks.emplace(std::forward<F>(f));}condition.notify_one();}private:std::vector<std::thread> workers;std::queue<std::function<void()>> tasks;std::mutex queueMutex;std::condition_variable condition;bool stop;};int main() {ThreadPool pool(4);for (int i = 0; i < 8; ++i) {pool.enqueue([i] {std::cout << "Task " << i << " executed by thread " << std::this_thread::get_id() << std::endl;});}// Sleep to allow threads to finishstd::this_thread::sleep_for(std::chrono::seconds(2));return 0;}#include <iostream> #include <vector> #include <queue> #include <thread> #include <mutex> #include <condition_variable> #include <functional> class ThreadPool { public: ThreadPool(size_t numThreads) : stop(false) { for (size_t i = 0; i < numThreads; ++i) { workers.emplace_back([this] { while (true) { std::function<void()> task; { std::unique_lock<std::mutex> lock(queueMutex); condition.wait(lock, [this] { return stop || !tasks.empty(); }); if (stop && tasks.empty()) { return; } task = std::move(tasks.front()); tasks.pop(); } task(); } }); } } ~ThreadPool() { { std::unique_lock<std::mutex> lock(queueMutex); stop = true; } condition.notify_all(); for (std::thread &worker : workers) { worker.join(); } } template<class F> void enqueue(F&& f) { { std::unique_lock<std::mutex> lock(queueMutex); tasks.emplace(std::forward<F>(f)); } condition.notify_one(); } private: std::vector<std::thread> workers; std::queue<std::function<void()>> tasks; std::mutex queueMutex; std::condition_variable condition; bool stop; }; int main() { ThreadPool pool(4); for (int i = 0; i < 8; ++i) { pool.enqueue([i] { std::cout << "Task " << i << " executed by thread " << std::this_thread::get_id() << std::endl; }); } // Sleep to allow threads to finish std::this_thread::sleep_for(std::chrono::seconds(2)); return 0; }#include <iostream> #include <vector> #include <queue> #include <thread> #include <mutex> #include <condition_variable> #include <functional> class ThreadPool { public: ThreadPool(size_t numThreads) : stop(false) { for (size_t i = 0; i < numThreads; ++i) { workers.emplace_back([this] { while (true) { std::function<void()> task; { std::unique_lock<std::mutex> lock(queueMutex); condition.wait(lock, [this] { return stop || !tasks.empty(); }); if (stop && tasks.empty()) { return; } task = std::move(tasks.front()); tasks.pop(); } task(); } }); } } ~ThreadPool() { { std::unique_lock<std::mutex> lock(queueMutex); stop = true; } condition.notify_all(); for (std::thread &worker : workers) { worker.join(); } } template<class F> void enqueue(F&& f) { { std::unique_lock<std::mutex> lock(queueMutex); tasks.emplace(std::forward<F>(f)); } condition.notify_one(); } private: std::vector<std::thread> workers; std::queue<std::function<void()>> tasks; std::mutex queueMutex; std::condition_variable condition; bool stop; }; int main() { ThreadPool pool(4); for (int i = 0; i < 8; ++i) { pool.enqueue([i] { std::cout << "Task " << i << " executed by thread " << std::this_thread::get_id() << std::endl; }); } // Sleep to allow threads to finish std::this_thread::sleep_for(std::chrono::seconds(2)); return 0; }
© 版权声明
本站文章由不念博客原创,未经允许严禁转载!
THE END